- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Arzoumanian, Zaven (1)
-
Berry, Samantha (1)
-
Berry, Samantha J. H. (1)
-
Blecha, Laura (1)
-
Bogdanov, Slavko (1)
-
Crump, Jack (1)
-
Deneva, Julia (1)
-
Dosopoulou, Fani (1)
-
Enoto, Teruaki (1)
-
Gendreau, Keith C. (1)
-
Hazboun, Jeffrey S. (1)
-
Howe, David A. (1)
-
Katz, Michael L (1)
-
Kelley, Luke Zoltan (1)
-
Kerr, Matthew (1)
-
Larson, Shane L (1)
-
Lewandowska, Natalia (1)
-
Lommen, Andrea N. (1)
-
Markwardt, Craig B. (1)
-
Montano, Sergio (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract ESA and NASA are moving forward with plans to launch LISA around 2034. With data from the Illustris cosmological simulation, we provide analysis of LISA detection rates accompanied by characterization of the merging massive black hole population. Massive black holes of total mass ∼105 − 1010M⊙ are the focus of this study. We evolve Illustris massive black hole mergers, which form at separations on the order of the simulation resolution (∼kpc scales), through coalescence with two different treatments for the binary massive black hole evolutionary process. The coalescence times of the population, as well as physical properties of the black holes, form a statistical basis for each evolutionary treatment. From these bases, we Monte Carlo synthesize many realizations of the merging massive black hole population to build mock LISA detection catalogs. We analyze how our massive black hole binary evolutionary models affect detection rates and the associated parameter distributions measured by LISA. With our models, we find massive black hole binary detection rates with LISA of ∼0.5 − 1 yr−1 for massive black holes with masses greater than 105M⊙. This should be treated as a lower limit primarily because our massive black hole sample does not include masses below 105M⊙, which may significantly add to the observed rate. We suggest reasons why we predict lower detection rates compared to much of the literature.more » « less
-
Hazboun, Jeffrey S.; Crump, Jack; Lommen, Andrea N.; Montano, Sergio; Berry, Samantha J. H.; Zeldes, Jesse; Teng, Elizabeth; Ray, Paul S.; Kerr, Matthew; Arzoumanian, Zaven; et al (, The Astrophysical Journal)Abstract We have used X-ray data from the Neutron Star Interior Composition Explorer (NICER) to search for long-timescale temporal correlations (“red noise”) in the pulse times of arrival (TOAs) from the millisecond pulsars PSR J1824−2452A and PSR B1937+21. These data more closely track intrinsic noise because X-rays are unaffected by the radio-frequency-dependent propagation effects of the interstellar medium. Our search yields strong evidence (natural log Bayes factor of 9.634 ± 0.016) for red noise in PSR J1824−2452A, but the search is inconclusive for PSR B1937+21. In the interest of future X-ray missions, we devise and implement a method to simulate longer and higher-precision X-ray data sets to determine the timing baseline necessary to detect red noise. We find that the red noise in PSR B1937+21 can be reliably detected in a 5 yr mission with a TOA error of 2μs and an observing cadence of 20 observations per month compared to the 5μs TOA error and 11 observations per month that NICER currently achieves in PSR B1937+21. We investigate detecting red noise in PSR B1937+21 with other combinations of observing cadences and TOA errors. We also find that time-correlated red noise commensurate with an injected stochastic gravitational-wave background having an amplitude ofAGWB= 2 × 10−15and spectral index of timing residuals ofγGWB= 13/3 can be detected in a pulsar with similar TOA precision to PSR B1937+21. This is with no additional red noise in a 10 yr mission that observes the pulsar 15 times per month and has an average TOA error of 1μs.more » « less
An official website of the United States government
